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Abstract—This paper develops a comprehensive artificial in-
telligence model, based on advanced data analytics methods,
to improve trucks energy efficiency for surface mines. Payload,
truck speed and the haul road total resistance are critical param-
eters that affect truck energy efficiency. The relationship between
the principal parameters and the truck energy consumption is
estimated by using an Artificial Neural Network (ANN) model.
The ANN is trained,validated and tested using operational data
collected from four large surface mines located in the United
States of America and Australia. The ANN model efficiently
creates a fitness function for the truck energy consumption.
This function is applied to develop a digital learning algorithm
based on a Genetic Algorithm (GA) and estimates the optimum
values of effective haulage parameters to reduce the diesel fuel
consumption by haul trucks at surface mines.

Index Terms—Energy Efficiency; Haul Truck; Surface Mine;
Simulation; Optimization; Artificial Intelligence; Artificial Neu-
ral Network; Genetic Algorithm

I. INTRODUCTION

Energy consumption in mining is rising due to lower grade
ores, located deeper underground, requiring greater mining
effort to extract, transport and process [1]. Mining operations
use energy in a variety of ways: excavation; material transfer;
milling and processing; ventilation, dewatering etc. [2]. Based
on the experience of completed industrial projects, significant
opportunities exist within the industry to reduce energy con-
sumption [2]. The potential to reduce energy use has motivated
both governments and the mining industry to research the topic
[3].

The most frequently used method of mining and hauling
materials is via a truck and shovel operation in surface mines,
[4] [5]. The trucking of overburden constitutes a significant
portion of energy consumption [3]. The research presented
by Carmichael et al. [6] is concerned with the effects of the
density of the load, the geology of the site, road surfaces and
gradients on the energy consumption of haul trucks. Cetin [7]
examined the relationship between haul truck energy efficiency
and loading rates, vehicle efficiency, and driving practices.
Beatty and Arthur [4] examined the effect of some overall
factors, such as mine planning and cycle time, on the energy
consumed by trucks. They determine the optimum values of
these parameters to minimize fuel consumption in hauling

operations. The study conducted by Coyle [8] is concerned
with the effects of payload on truck fuel consumption. In this
study, he shows the impact load density variation, based on
the blasting procedures, has on fuel consumption f haul trucks.
Soofastaei et al. completed many different projects in the field
of haul truck energy efficiency in surface and underground
mines [9-16].

To the authors best knowledge, the investigations presented
in the literature are based primarily on the theoretical models
used to estimate the fuel consumption of mine trucks. These
models are based on the curves prepared by the truck manu-
facturer for the performance of mine haul trucks [5, 17-22].

In the current research, the effects of the three main,
effective parameters on fuel consumption of haul trucks have
been examined. These parameters are Payload (P), Truck
Speed (S) and Total Resistance (TR). On a real mine site,
the correlation between fuel consumption and the parameters
mentioned above is complex. Therefore, in this study, two
artificial intelligence (AI) methods have been used to create a
model to estimate and then reduce fuel consumption. The AI
model developed has been completed and tested in four case
studies. All datasets have been collected from four surface
mines in the United States of America and Australia. The
model developed can estimate the energy consumption of one
model of truck in open-pit and open-cut mines using an Arti-
ficial Neural Network (ANN) and can then find the optimum
values of P, S and TR that minimize fuel consumption by using
a Genetic Algorithm (GA).

II. CALCULATION OF HAUL TRUCK FUEL CONSUMPTION

Fuel consumption by mine trucks is a function of several
factors. The most important influences can be categorized into
seven main groups: fleet management; mine planning; modern
technology; haul road; design and manufacture; weather con-
dition and fuel quality [12]. In the current research, the effects
of the P, S and TR on the fuel consumption of mine trucks
were investigated. The total resistance is equivalent to the sum
of the grade resistance (GR) and the rolling resistance (RR)
[21].

TR = RR+GR (1)



The rolling resistance depends on the tire and road surface
features is applied to estimate the Rimpull Force (RF), which
is the force that resists motion as the truck tire rolls on the
haul road. The typical range of values for RR is between 1.5%
and 4.0%. However, RR can be more than 10% in the mud
with a soft spongy base for road condition [12].

The GR is the gradient of the road and is measured as a
percentage and calculated as the ratio between the horizontal
and the length rise of the route [12]. For example, a section of
the haul road that rises 15 m over 100 m length has a GR of
15%. The GR can be positive or negative depends on a truck
traveling up or down a slope.

The truck Fuel Consumption (FC) can be calculated from
(2) [23]:

FC =
SFC

FD
(LF.Po) (2)

Where SFC is the engine Specific Fuel Consumption at full
power (0.2130.268 kg/(kw.hr)) and FD is the Fuel Density
(0.85 kg/L for diesel), LF is the engine Load Factor and Pois
Truck Power The simplified version of (3) is presented by
[24]:

FC = 0.3(LF.Po) (3)

The engine Load Factor LF is estimated as the percentage
of normal load to the maximum payload in an operating cycle
[25]. Po in (4), Truck Power (kW), is determined by:

Po =
1

3.6
(RF.S) (4)

Where the RF is calculated by the product of Rimpull (R)
and the gravitational acceleration (g) and S, Truck Speed.

A practical index FCIndex (L/hr.tonne) used on this re-
search project was devised based on the data availability at
the mine sites as well as the literature review. The FCIndex

can be determined as demonstrated in (5).

FCIndex =
FC

P
(5)

This index is the target of the fuel consumption prediction
phase which can be seen as a regression problem in machine
learning field. The formulation of this index has a huge
potential and benefits for the optimization phase which will
be explained in details on the GA section.

III. DATA COLLECTION

In this study, datasets collected by mine engineers at four
big surface mines in the United States of America and Aus-
tralia, over a six months period were analyzed to create all the
models presented. Summary information about each mine has
been tabulated in Table I.

The mine site datasets include date, payload (tonne), truck
speed (S) (km/hr), cycle time (hh:mm:ss), cycle distance (km),
RR (%), GR (%), TR (%) and FC (L/hr) for a fleet of CAT
rigid body trucks. The data measured was collected using a
Vehicle Information Management System (VIMS). VIMS is

TABLE I: Mine sites studied (General Information)

No Type Product Location Fleet size
1 Open Cut Coking Coal Queensland, Australia 184 Truck
2 Open Pit Iron Ore Western Australia 67 Truck
3 Open Pit Copper Arizona, USA 124 Truck
4 Open Pit Copper Arizona, USA 79 Truck

an electronic package consisting of a main processor and a
network of sensors installed on all new Caterpillar equipment,
designed to capture a wide range of data in order to manage
the performance of a given machine. In fact, todays CAT
equipment generates huge volumes of data to enable miners to
monitor machine health and condition, track equipment hours
and usage, to optimize work flows and production cycles,
maximize equipment uptime and ultimately, to reduce mine
operating costs per tonne [26].

The correlation between truck fuel burnt and nominated
factors in this study (P, S and TR) is complex and nonlinear
requiring a robust machine learning model to determine. The
next section of this paper contains the details of the artificial
neural network model that was created to determine how
the truck fuel consumption changes with variations in the
nominated factors.

IV. ESTIMATION OF HAUL TRUCK FUEL CONSUMPTION

The configuration of the ANN algorithm created for fuel
consumption function estimate is a feed-forward, multi-layer
perceptron NN with three input variables and one output. The
activation functions in the hidden layer (f) are the continuous,
differentiable nonlinear tangents sigmoid functions presented
in

f = tansig(E) =
2

1 + exp(−2E)
− 1 (6)

where E can be determined by :

E =

q∑
j=1

(wijkxj + bik) k = 1, 2, ...,m (7)

Where x is the normalized input variable, w is the weight
of that variable, i is the input, b is the bias, q is the number
of input variables, and k and m are the counter and number
of neural network nodes, respectively, in the hidden layer.

The production layer calculates the weighted sum of the
signals provided by the hidden layer and the associated coef-
ficients. The network output can be assumed by:

Out = (

m∑
k=1

wokf(Ek)) + b0 (8)

Mean Square Error (MSE) and Coefficient of Determination
(R2) were calculated for different amounts of nodes in the
hidden layer to find the optimal number of nodes in the
hidden layer. The minimum MSE and the maximum R2 (best
performance) were observed for 12, 9, 15, 10 nodes in the
hidden layer for Mine1,2,3, and 4 respectively.



A. ANN Learning and Testing

For training and validating the developed ANN model, it
was used a hold out approach with 80% for training and
20% for validation, from real datasets collected for the four
mine sites studied. It was also used an EarlyStopping and
ModelCheckPoint techniques to avoid overfitting.

The EarlyStopping technique implemented checks for every
loss improvement in the validation set in comparison with
the last iteration. In case it doesn’t improve it starts counting
until a threshold called patience is reached when the training
process is interrupted. The value of patience was set to 10.
Also the ModelCheckPoint implemented saves the weights
matrix at every improvement of the validation loss to further
analysis or possible transfer learning.

After achieving stable results on the validation set, the
models were tested with independent samples.

The test results show acceptable agreement between the ac-
tual and estimated values of fuel consumption for all the mine
sites investigated. The test results of the synthesized networks
are shown in Figures 1a,1b,1c and 1d where the horizontal
and vertical axes indicate the estimated fuel consumption
rate (FCIndex(Liters/hour.tonne) values and the actual fuel
consumption rate values respectively.

(a) Mine 1 (b) Mine 2

(c) Mine 3 (d) Mine 4

Fig. 1: Comparison of actual values with the estimated value
of haul truck fuel consumption rate FCIndex by the developed
ANN model

Figures 2,3,4,5 illustrate the correlation between P , S, TR
and FCIndex created by the developed ANN models for a
normal range of payloads for a different type of truck for the
four mines sites studied.

The graphs presented show that there is a nonlinear cor-
relation between FCIndex and payload. The rate of energy
consumption increases intensely with increasing total resis-
tance. However, this energy consumption rate does not change
suddenly with changing truck speed. The models developed
also show that the amount FCIndex changes with variation in

Fig. 2: Mine: 1 truck: CAT 793D

Fig. 3: Mine: 2 truck: CAT 785D

truck speed and payload. However, there is no clear correlation
between all effective factors and energy consumption.

Fig. 4: Mine: 3 truck: CAT 777D



Fig. 5: Mine: 4 truck: CAT 775G

Even though predicting the amount of fuel consumed for
haul trucks is really useful, it is highly desired for mining
companies to know how reduce the fuel consumption or in
other words what would be the practical actions needed to
minimize the fuel burnt. As a result, completing another
artificial intelligence model is required to find the optimum
value of the selected factors to minimize the mine truck fuel
consumption.

V. OPTIMIZATION OF EFFECTIVE PARAMETERS ON HAUL
TRUCK FUEL CONSUMPTION

In this project, GA models were developed to improve three
critical parameters that influence the energy consumption of
haul trucks in the mine sites studied. The genetic algorithm
was selected as a mono-objective optimization strategy mainly
because of its capability to handle diverse operational situa-
tions and its parallelization power in the searching process.
All GA processes in the model developed are illustrated in
Figure 6.

Fig. 6: Genetic algorithm processes (Developed Model)

The capabilities of GA go hand in hand with the primary
goal for this optimization process, which is providing a set of
P , S and TR values for the final user that will yield a min-
imum FCIndex. This ability to limit the optimization search
space in a range of values is significant in real applications;
for example, truck drivers cant reach an exact speed or even

an average speed during a whole cycle period due to safety
recommendations and/or road conditions. Also, using GA has
the benefit of choosing one or more solutions from the final
population after the optimization process is over. Those are the
reasons why gradient-based optimization algorithms werent
evaluated - such as making the same, trained ANN aspire to
create inputs that minimize the FCIndex.

The formulation proposed for the FCIndex directly benefits
the prediction (ANN) phase as well as the optimization process
(GA). It can be noticed in (5) that one of the features (P )
used to predict the regression target FCIndex is also used to
calculate the fuel consumption rate FCIndex. This strategy
creates a strong relationship between the target FCIndex and
the features making enhancing the ANN prediction capabili-
ties.

Moreover, as mentioned before the optimization goal is to
minimize the FCIndex which unit is (Liters/hours.Tonne). It
is evident that to achieve this goal the FC (Liters/hours) has
to decrease while the P (Tonne) has to increase. At first
this might sound simple, but the result of this formulation
transformed a multi-objective optimization problem (Minimiz-
ing Fuel and Maximizing Productivity) in a mono-objective
problem ( Minimizing FCIndex) resulting in a straight forward
solution and more efficient in terms of computational cost.

Another vital factor in successfully using the GA as the
optimization process for this project is assessing the char-
acteristics of the population. All the individuals must be
checked throughout generations to ensure they are in the same
distribution (i.e. maximum and minimum values) in which the
ANN was trained. This is for two reasons. First, the ANN
only mapped the relationship among P , S, TR and FCIndex

based on the data provided during the training phase, and the
prediction results or the fitness values are reliable only within
the constraints of this distribution. Second, the values of each
individual attribute must reflect the reality of mine site and
truck operational limitations in order to subsequently provide
feasible, practical solutions.

In the model developed, payload, truck speed and total
resistance are the parameters considered to form a individual,
with the primary function of optimization being mine truck
fuel consumption FCIndex. In this model, the fitness function
was created by the ANN algorithm which evaluates each
individual throughout the generations assigning a FCIndex to
a combination of P , S and TR.

In this model, seven main processes were defined. These
are: initialization; encoding; crossover; mutation; decoding,
selection, and replacement. The details of the procedures
mentioned above are presented in Table II.

In these developed model, the key factors applied as stop-
ping criteria was the MSE of overall population related to a
predefined optimum value for FCIndex. The initial population
size was different for different mine sites, and a uniform
creation function was defined to generate a new population.
Technical details of the developed models for the four mine
sites studied are presented in Table III.



TABLE II: GA Procedures

Procedure Details

Initialization Produce original population of candidate
solutions

Encoding Digitalizes original population value

Crossover Combine parts of two or more parental
answers to make a new one

Mutation

Deviation process. It is intended to
infrequently break one or more participants
of a population out of minimum local
space and potentially discover a better
answer

Decoding Change the digitalized format of a new
generation to the original one

Replacement Replace the individuals with better fitness
values as parents

TABLE III: Technical details of GA developed model

Parameters Mine1 Mine2 Mine3 Mine4

Population type Double
vector

Double
vector

Double
vector

Double
vector

Population size 20 50 30 20
Creation function Uniform Uniform Uniform Uniform
Scaling function Rank Rank Rank Rank
Selection
function

Stochastic
uniform

Stochastic
uniform

Stochastic
uniform

Stochastic
uniform

Elite count for
reproduction 2 3 2 2

Crossover
fraction 0.8 0.7 0.8 0.9

Mutation
function Uniform Uniform Uniform Uniform

Rate of mutation 0.01 0.02 0.01 0.03
Crossover
function Scattered Scattered Scattered Scattered

Migration
direction Forward Forward Forward Forward

Migration
Fraction 0.2 0.1 0.3 0.2

Migration
Interval 20 20 20 20

Constraint
Parameters
(Initial Penalty)

10 10 10 10

Constraint
Parameters
(Penalty Factor)

100 100 100 100

Stopping criteria MSE MSE MSE MSE

Finally, the optimized parameters (P , S and TR) are pre-
sented by the algorithm. These improved factors can be used
to minimize the haul truck fuel consumption. All procedures
in the developed models were based on datasets collected from
four large surface mines in the United States of America and
Australia. However, the methods and models created can be
utilized for other surface mines by substituting their data for
the original.

A. Optimization results

The first step in applying the developed optimization model
is defining the range (minimum and maximum values) of
all the variables (individuals). The variable ranges estimated
are based on the collected datasets in the established model.
The parameters used to evaluate the quality of the candidate
solutions was the MSE of overall individuals related to a op-

timum value predefined. In this mine (Mine 1 as an example),
the optimum value for FCIndex was around 0.04 which was
achieved after the 47th generation as presented in figure 7

Fig. 7: Fuel Consumption (Fitness Value) in all generations
(Sample for Mine1)

From this generation forward, the MSE values of overall
population were roughly constant, but the algorithm continued
all procedures until the 53rd. That is because it was also
defined a confidence interval of generations for convergence
of the candidate solutions to ensure that reliable results were
obtained. The value of the fitness function (FCIndex) in all
generations is illustrated in Figure 7. The simulated value of
mine truck fuel consumption varies between 0.03 and 0.13
(L/(hr.tonne)). The mean of the estimated results is 0.076
(L/(hr.tonne)), and more than 45% of results are located above
the average line. The model presented could find some local
minimized fuel consumption, but the acceptable results are
generated after the 47th generation. Figure 7 also shows that
the FCIndex is about 0.04 (L/(hr. tonne)), which lies in the
acceptable area. It means that by improving the payload,
truck speed and total resistance in the mine site studied, the
minimum FCIndex for the CAT 793D haul truck was found
to be about 0.04 (L/(hr. tonne)).

The optimum range of variables to minimize fuel consump-
tion for the specified haul trucks in mine sites studied are
tabulated in Table IV, where GVW stands for Gross Vehicle
Weight.

VI. SUMMARY

The purpose of the studies presented was to develop a
genetic algorithm model to improve mine truck fuel consump-
tion, based on the correlations between payload, truck speed
and haul road total resistance, created by analysis using real
datasets collected from surface mining operations in four open-
pit and open-cut mine sites located in the United States of
America and Australia. The correlations were complicated and
required artificial intelligence methods to create a consistent,
reliable algorithm to tackle this challenge. In the first part
of the project, an ANN algorithm was established to find a



TABLE IV: Optimization model recommendations

Mine Truck Variables Normal Optimized
Min Max Min Max

GVW(tonne) 150 380 330 370

1 CAT
793D TR(%) 8 20 8 9

S(Km/hr) 5 25 10 15

GVW(tonne) 65 150 145 155

2 CAT
777D TR(%) 9 25 9 11

S(Km/hr) 10 45 10 12

GVW(tonne) 45 95 75 90

3 CAT
775G TR (%) 13 20 13 14

S(Km/hr) 5 55 9 13

GVW(tonne) 125 215 200 215

4 CAT
785D TR(%) 8 15 8 9

S(Km/hr) 5 45 10 15

relationship between the parameters investigated. The results
illustrated that fuel consumption has a nonlinear correlation
with the parameters studied. The ANN was subsequently
taught and then validated using the real mine sites datasets that
had been gathered. The results demonstrated that there was
good agreement between the estimated and actual values of
haul truck fuel consumption. In the last phase of the project, to
minimize the fuel consumption in haulage operations, a genetic
algorithm was developed. The results showed that by applying
this method, optimization of the effective factors driving
energy consumption is possible. The algorithm established was
able to find the local minimums for the fitness functions. The
GA model developed demonstrated satisfactory capabilities to
minimize the rate of fuel burnt in surface mines. The haul truck
parameters that affect fuel consumption were investigated,
within the data range available, and were optimized, and
the best values of payload, truck speed and haul road total
resistance that would minimize FCIndex were identified.

REFERENCES

[1] BREE, Australian energy update. 2017, Australian Government, Bureau
of Resources and Energy Economics: Canberra, Australia. p. 9-11.

[2] DOE, Mining industry energy bandwidth study. 2012, Department of
Energy, USA Government: Washington DC, USA. p. 26-33.

[3] DOE, Energy and environmental profile of the US mining industry. 2002,
Department of Energy, USA Government: Washington DC, USA. p. 63-
87.

[4] Beatty, J and D Arthur. Mining truck operations. in Mining truck
operations in Australia. 1989. Melbourne, Australia: AusIMM Bulletin.

[5] Beckman, R, Haul trucks in Australian surface mines. 2012: Australia.
p. 87-96.

[6] Carmichael, David, Beau Bartlett, and Alireza Kaboli, Surface mining
operations: coincident unit cost and emissions. International Journal of
Mining, Reclamation and Environment, 2014. 28(1): p. 47-65.

[7] Cetin, Necmettin, Open-pit truck/shovel haulage system simulation. A
thesis of the Graduate School Of Natural And Applied Sciences Of
Middle East Technical Universality. Turkey, 2004. 1(2): p. 147-156.

[8] Coyle, M, Effects of payload on the fuel consumption of trucks. 2007,
Department for Transport: London. p. 36-40.

[9] Soofastaei, A, SM Aminossadati, MS Kizil, and P Knights, A compre-
hensive investigation of loading variance influence on fuel consumption
and gas emissions in mine haulage operation. International Journal of
Mining Science and Technology, 2016. 26(6): p. 995-1001.

[10] Soofastaei, A, SM Aminossadati, MS Kizil, and P Knights, A discrete-
event model to simulate the effect of truck bunching due to payload
variance on cycle time, hauled mine materials and fuel consumption.
International Journal of Mining Science and Technology, 2016. 26(5):
p. 745-752.

[11] Soofastaei, A, M Aminossadati Saiied, S Kizil Mehmet, and Knights P,
Payload variance plays a critical role in the fuel consumption of mining
haul trucks Australian Resources and Investment, 2014. 8(4): p. 63-64.

[12] Soofastaei, Ali, Saiied Mostafa Aminossadati, Mohammad Mehdi Arefi,
and Mehmet Siddik Kizil, Development of a multi-layer perceptron
artificial neural network model to determine to haul trucks energy
consumption. International Journal of Mining Science and Technology,
2016. 26(2): p. 285-293.

[13] Soofastaei, Ali, Saiied Mostafa Aminossadati, Mehmet Siddik Kizil,
and Peter Knights, Development of an artificial intelligence model to
determine trucks energy consumption, in Energy Future Conference.
2014, Future Energy: University of New South Wales, Sydney, Australia.
p. 178-179.

[14] Soofastaei, Ali, Saiied Mostafa Aminossadati, Mehmet Sedik Kizil, and
Peter Knights, Payload variance plays a critical role in the fuel con-
sumption of mining haul trucks. Australian Resources and Investment,
2014. 8(4): p. 64-64.

[15] Soofastaei, Ali, Saiied Mostafa Aminossadati, Mehmet Siddik Kizil, and
Peter Knights, Simulation of payload variance effects on truck bunching
to minimise energy consumption and greenhouse gas emissions, in
2015 Coal Operators Conference. 2015, The University of Wollongong:
University of Wollongong, Wollongong, NSW, Australia. p. 338-347.

[16] De Francia, Matthew, Ali Soofastaei, Saiied Aminossadati, Mehmet
Kizil, and Peter Knights, Filling up the tank. Australasian Mining
Review, 2015. 2(12): p. 56-57.

[17] Alarie, Stphane and Michel Gamache, Overview of solution strategies
used in truck dispatching systems for open pit mines. International
Journal of Surface Mining, Reclamation and Environment, 2002. 16(1):
p. 59-76.

[18] Bhat, Vasanthakumar, A model for the optimal allocation of trucks for
solid waste management. Waste Management and Research, 1996. 14(1):
p. 87-96.

[19] Burt, Christina Naomi and Louis Caccetta, Match factor for heteroge-
neous truck and loader fleets. International Journal of Mining, Recla-
mation and Environment, 2007. 21(4): p. 262-270.

[20] Nel, S, Mehmet Sedik Kizil, and Peter Knights, Improving truck-shovel
matching, in 35th APCOM Symposium. 2011, Australasian Institute of
Mining and Metallurgy (AusImm): the University of Wollongong, NSW,
Australia. p. 381-391.

[21] Caterpillar, Caterpillar performance handbook. 10 ed. Vol. 2. 2013, New
York City, USA: US Caterpillar Company. p. 184-192.

[22] Caterpillar, CAT 793D mining truck, Cat, Editor. 2013, Caterpillar: USA.
p. 4-7.

[23] Filas, L, Excavation, loading and material transport. Vol. 2. 2002, USA:
Littleton Co. p. 89-94.

[24] Runge, Ian Charles, Mining economics and strategy. Vol. 4. 1998,
Australia Society for Mining, Metallurgy, and Exploration. p. 256-263.

[25] Kecojevic, V and D Komljenovic, Haul truck fuel consumption and
CO2 emission under various engine load conditions. Mining engineering,
2010. 62(12): p. 44-48.

[26] Caterpillar, Capturing data. Delivering Results System (VIMS), Cat,
Editor. 2013, Caterpillar Company New York City, USA. p. 326-332.

[27] Reihanian, M, SR Asadullahpour, S Hajarpour, and Kh Gheisari, Appli-
cation of neural network and genetic algorithm to powder metallurgy of
pure iron. Materials and Design, 2011. 32(6): p. 3183-3188.

[28] Ekici, Bektas and Teoman Aksoy, Prediction of building energy con-
sumption by using artificial neural networks. Advances in Engineering
Software, 2009. 40(5): p. 356-362.

[29] Beigmoradi, Sajjad, Hassan Hajabdollahi, and Asghar Ramezani, Multi-
objective aeroacoustic optimisation of rear end in a simplified car model
by using hybrid robust parameter design, artificial neural networks and
genetic algorithm methods. Computers and Fluids, 2014. 90: p. 123-132.



[30] Lim, Amy HL, Chien-Sing Lee, and Murali Raman, Hybrid genetic
algorithm and association rules for mining workflow best practices.
Expert Systems with Applications, 2012. 39(12): p. 10544-10551.


