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Chapter

Energy Efficiency Improvement in
Surface Mining
Ali Soofastaei and Milad Fouladgar

Abstract

This chapter aims to provide an overview of energy efficiency in the mining
industry with a particular focus on the role of fuel consumption in hauling operations
in mining. Moreover, as the most costly aspect of surface mining with a significant
environmental impact, diesel consumption will be investigated in this chapter. This
research seeks to develop an advanced data analytics model to estimate the energy
efficiency of haul trucks used in surface mines, with the ultimate goal of lowering
operating costs. Predicting truck fuel consumption can be accomplished by first iden-
tifying the significant factors affecting fuel consumption: total resistance, truck pay-
load, and truck speed. Second, developing a comprehensive analysis framework. This
framework involves generating a fitness function from a model of the relationship
between fuel consumption and its affecting factors. Third, the model is trained and
tested using actual data from large surface mines in Australia, obtained through field
research. Finally, an artificial neural network is selected to predict haul truck fuel
consumption. The visualized results also clarify the general minimum areas in the
plotted fuel consumption graphs. These areas potentially open a new window for
researchers to develop optimization models to minimize haul truck fuel consumption
in surface mines.

Keywords: energy efficiency, fuel consumption, surface mining, artificial
intelligence, prediction

1. Introduction

Energy consumption in the last decade represents an increasing trend. Energy
demand is growing across many countries globally as the population grows and
human needs expand [1, 2]. As a consequence, fossil fuel consumption has also
increased. Additionally, industrial activities have contributed directly and indirectly
to annual greenhouse gas emissions [3, 4]. Australian energy consumption, for
instance, grew by 0.7% a year on average for the past decade and reached 6014 PJ in
2019–2020, according to the Australian Bureau of Statistics [5, 6]. Fossil fuels (coal,
oil, and gas) accounted for 93% of Australia’s primary energy source in 2019–2020.
Oil accounted for the most significant proportion of Australia’s primary energy
mix in 2019–2020, at 37%, followed by coal (28%), gas (27%), and renewable
energy 8% [5].

1



Therefore, in recent years, the effects of sustainability on energy production and
use have been well understood, and sustainability studies have recently considered
enhancing energy efficiency. This is not an outlier trend to be found within the mining
industry.

For many countries, mining is a crucial industry. Minerals, coal, metals, sand, and
gravel are needed for construction and production and provide employment, taxes,
and dividends that fund hospital, schools, and public facilities. To put it another way,
mining is first and foremost a source of valuable mineral raw materials that are
considered essential by all countries for national security, wealth creation,
maintaining and improving the living standards of individual citizens [7].

Mining operations consume vast amounts of energy. For example, Mining in
Australia consumes more than 9% of the nation’s total energy consumption, which
amounts to 570 petajoules per year [8]. Approximately 41% of mining’s energy is
derived from diesel, 33% from natural gas, and 22% from grid electricity, with the
remainder being derived from coal, LPG, renewables, and biofuels. It is worth noting
that diesel consumption has recently decreased from 49 to 41% in a decade [9]. It has
been replaced mainly by natural gas and grid electricity due to infrastructure devel-
opment and fluctuations in oil prices.

The mining industry appears to have benefited from rising fuel prices in the 1970s,
as evidenced by studies on improving energy efficiency and using sustainable energy
sources in the industry. As a result, reducing energy consumption has gradually
become a priority for many countries with significant mining operations. Several
projects have been conducted by the United States, Australia, Germany, Canada, and
China that reduce energy consumption in mining operations [10–12]. Moreover, some
governmental moves make industries pay for carbon taxes and similar regulatory
costs, leading to the unprofitable and unsustainability of energy-intensive processes.

There are several aspects in the mining value chain where energy efficiency can be
improved, such as managing electricity demand, capturing waste heat, improving
ventilation, reducing mine drainage, and generating energy from by-products [13].
Numerous authors examined the energy consumption of various mining equipment.
Oskouei and Awuah-Offei [11] studied energy consumption and dragline parameters.
Peralta and colleagues demonstrate in their research that a maintenance policy based
on equipment reliability can significantly reduce energy consumption [14]. Kuzin and
colleagues proposed a method for estimating the energy consumption of process
equipment and the relationship between energy consumption and vibration parame-
ters and the temperature of the equipment surfaces [15]. According to research,
blasting and material handling operations such as loading and hauling have the most
significant potential for improving energy efficiency and lowering operating costs
[16–20]. Based on numerous studies that have been conducted comparing energy
efficiency improvements in mineral processing plants and material handling to other
processes, this statement is confirmed.

Companies in the mining industry have recently begun implementing advanced
Information Technologies (IT) to improve processes and simultaneously reduce
energy consumption and operating costs. The mining industry deals with a large
amount of data with layers of hidden knowledge. Since data analytics involves the
science of analyzing raw data to derive information, it is a very effective technique for
bringing disparate data sources together. Furthermore, data analytics provides cost
savings, faster and better decision-making, and the development of new products
and services, among other benefits [21]. As a result, data analytics is widely used,
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and it has a wide range of applications that many people may not have previously
considered.

This chapter discusses advanced data analytics techniques to enhance mining
energy efficiency. Open-pit haulage is the main target of the discussion. One of the
objectives of this research is to develop a sophisticated data analytics model for
assessing haul truck energy efficiency in surface mining. Concerning energy con-
sumption in surface mining, the primary focus of this research is on the application of
Artificial Neural Networks (ANNs) for prediction in the investigation of energy
efficiency.

2. Energy consumption in mining

Mining is a crucial part of the global economy. In 2020, the top 40 mining compa-
nies made approximately 656 billion dollars [22]. Every year, hundreds of millions of
raw materials are delivered to factories, the construction industry, utilities, and other
commercial enterprises in the United States. Coal, metals, minerals, as well as sand
and gravel are examples of such resources.

Research conducted in this area focuses on mining in Australia, which has also
been a cornerstone of the Australian economy. Australia is the world’s largest pro-
ducer of lithium and is one of the world’s top five producers of gold, iron ore, lead,
zinc, and nickel, as well as some other minerals. In addition, the country has the most
significant uranium and fourth-largest black coal resources in the world, respectively.
Minerals are also one of Australia’s major exports. Depending on their location, they
are mined through open-cut mining on the earth’s surface or underground mining
techniques.

About the population, the energy consumption of Australia’s industrial sector
is among the highest. However, partly due to lower energy prices and lower
rates of capital investment in the manufacturing industry, the rate of improvement
in Australia’s industrial development has lagged behind that of other countries
[23, 24].

According to the most recent statistics, the sectors with the highest energy con-
sumption in 2019–2020 were manufacturing and mining [8]. The mining industry in
Australia consumes about 570 Pita Joules (PJ) of energy each year. However,
Approximately a tenth of it can be savable [18]. Due to the significant energy savings
opportunities, mining firms and the government have conducted many studies on
cutting this industry’s energy consumption (see Table 1).

The amount of energy consumed by a mine depends on various factors, including
the minerals it mines, the production processes it employs, and the extraction tech-
nologies it employs. Figure 1 illustrates the relative amounts of energy used by the
world’s three most energy-intensive mining sectors.

A mine’s fuel type will vary depending on its type (underground or open-pit mine)
and its process. Mining operations use diesel fuel, electricity, natural gas, coal, and
gasoline, which account for 34%, 32%, 22%, 10%, and 2% of total energy consump-
tion, respectively (see Table 2).

Table 3 shows how much energy is currently being used by various types of
mining equipment. The most energy is used in material handling by diesel equipment
(17%) and grinding equipment (40%).
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Fuel type Amount (PJ/year) Percentage

Gasoline 12.1 2%

Coal 60.7 10%

Natrural gas 133.5 22%

Electricity 194.2 32%

Diesel 206.4 34%

Table 2.
Fuel consumed in the mining industry [6, 26, 27].

Figure 1.
Energy use by mining sub-division (PJ/year) [6, 25].

Case study 2015–2016

(PJ)

2016–2017

(PJ)

2017–2018

(PJ)

2018–2019

(PJ)

2019–2020

(PJ)

Agriculturea 109 115 117 118 104

Mining 524 529 547 562 570

Manufacturing 964 928 938 915 910

Electricityb 136 130 132 130 133

Construction 135 142 148 140 144

Transportc 646 665 688 693 606

Commercial and services 330 337 345 354 347

Households 1247 1255 1274 1279 1228

aIncludes Forestry and fishing.
bIncludes Gas, water supply, and waste services.
cIncludes Postal and warehousing.

Table 1.
Energy consumption by industries and households in Australia [8].
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3. Truck energy consumption

The hauling of mined material from a pit to a stockpile, dumpsite, or the next step
in the mining process is accomplished by trucks at a surface mining operation. Their
use may be combined with other types of machinery, such as loaders, diggers, and
excavators, depending on the layout and production capacity of the site [28–31].
Surface mines in Australia use a considerable amount of diesel and are costly to
purchase, maintain, and operate [28].

It is insufficient to analyze only the parameters specific to a haul truck to estimate
its energy efficiency. By expanding the analysis of how energy is used throughout an
entire fleet, companies can often find more significant benefits [32, 33]. This chapter
is concerned with the identification and optimization of these parameters.

A fleet’s energy efficiency can be affected by a variety of factors, including the rate
of mining at a particular site, the age and condition of its equipment, the payload, the
truck speed, and truck cycle time, the mine layout and plan, the idle time, tire wear,
rolling resistance, dumpsite design, engine operating parameters, and shift patterns.
By combining this knowledge with mine planning and design procedures, energy
efficiency can be improved [34–38].

3.1 Mine operating parameters

Trucks in mines can use a variety of parameters that can influence how much
energy they use, some of which are listed in Table 4.

3.2 Truck travel time

The time spent hauling and returning the payload is referred to as the travel time.
There are four methods for calculating travel time: time study, Rimpull curves,
empirical calculations, and computer simulation. Time study is the most common
method.

Fuel type Amount (PJ/Year) Percentage

Electric Equipment for Material Handling 9 4%

Separations 9 4%

Ancillary Operations 19 8%

Crushing 9 4%

Ventilation 23 10%

Digging 14 6%

Blasting 5 2%

Drilling 12 5%

Grinding 93 40%

Material Handling Diesel Equipment 40 17%

Table 3.
Energy consumption in the mining industry [6, 26, 27].
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3.3 Haul profile

Information that effectively estimates travel time, such as distance, vehicle weight,
slope, and speed limit, is called a haul profile.

Fuel type Amount (PJ/year)

Truck model and

type

Each type and model of the truck has unique characteristics, and these can be

effective on energy consumption by truck.

Material Material that is hauled

Bucket density The density of the material being loaded.

Swell factor The swell factor is the volume increase after material has been disturbed.

Bucket load Estimated bucket load that the loading unit can carry in BCM

Calculated passes

to fill

Estimate how many bucket loads (passes) are required to fill the truck to its nominal

capacity.

Calculated truck

payload

The estimated average payload that the truck will carry after considering all the above

factors

Load factor Percentage of truck fill compared to its nominal or rated payload.

Time per pass Time is taken for a loading unit to complete one pass.

Load time Time is taken to load the truck.

Spot time The time during which the loading unit has the bucket in place to dump but is waiting

for the truck to move into position. Spot time will depend on the truck driver’s ability

and the loading system. Double-side loading should almost eliminate spot time.

Dump time Time is taken for the truck to maneuver and dump its load either at a crusher or

dump.

Fixed time Sum of load, spot, and dump time. It is called ‘fixed’ because it is essentially

invariable for a truck and loading unit combination.

Travel time Time is taken to haul and return the load.

Wait time Duration of time spent waiting for the loading unit to arrive.

Cycle time The truck’s round trip time is the sum of fixed, travel, and wait times.

Efficiency The amount of productive time achieved in one hour of operating time is measured.

The following activities are included in the efficiency factor: Cleaning up by the

loading unit or dozer and grading. All aspects to consider are slowdowns in the

crusher and dump, fueling, inspections, loading unit movement, and operator

experience. Under the heading of trucking, Weather-related delays have occurred

more frequently than usual.

Queue factor It keeps track of the time that has been lost due to queuing. It is yet another way of

expressing the length of time spent waiting.

Productivity Tonnes of production hauled in an operating hour (t/h)

Productivity = Efficiency/(Cycle time � Truck payload � Queuing factor)

Mechanical

availability

Depending on the type of machine, its age, and the maintenance philosophy,

Utilization Operating time divided by available time

Production Hourly Productivity � Operating Hours

Table 4.
Parameters that influence the energy consumption of haul trucks [21, 39, 40].
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4. Identifying the most influential parameters

A variety of variables influences the energy consumption of a truck. Because of the
constraints of the project, it is not possible to model all of the parameters at this time.
The model, therefore, includes the most important parameters. Mining energy savings
opportunities can be categorized based on the latest government reports, staff opera-
tions, maintenance procedures, management systems, energy measurement, energy
management parameters, and new technologies [41–43]. Figure 2 represents the
amount of energy saved and the percentage of total savings achieved by mining
companies during the 2019–2020 period, based on the types of energy efficiency
opportunities identified and implemented by the companies. The mining entities
identified the most energy savings opportunities through energy management pro-
jects or 4.61 PJ. This accounts for 55 percent of the total potential savings determined
by the mining companies.

Three main parameters have been identified as effective in reducing truck fuel
consumption due to an online survey conducted for this research. The survey reached
out to 60 industry professionals, who responded at a rate of 81 percent. According to
the survey findings, the payload, truck speed, and the resistance of the road are the
three most important factors influencing haul truck fuel consumption. Following
identifying the primary effective parameters on haul truck fuel consumption in sur-
face mines, a practical method for creating the model must be selected to predict the
burnt fuel with the trucks in the mine site. ANN is the name of this method.

5. Artificial neural network (ANN)

ANNs or neural networks, also known as a simulated neural network (SNN), or
what is known as ‘parallel distributed processing,’ represents how the brain uses
various methods to learn. The ANN is a collection of mathematical models intended to
mimic a few of the common characteristics of natural neural networks. In some cases,

Figure 2.
Opportunities for energy conservation in the mining industry [41, 42].
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the unusual structure of the data processing system may be the most critical compo-
nent of an ANN paradigm. Figure 3 depicts an example of a neuronal model that
consists of weighted connectors, an adder, and an activation function, among other
components. These models are used in computer applications to solve complex prob-
lems that arise from user input. They do not require a mathematical description of the
process-related phenomena, nor do they need any information to identify the factors
that are associated with the process. Instead, they rely on acceptable errors and simple
models [35, 36].

In neural networks, the node is the main component. Signals from various sources
are summarized by biological nodes, which perform nonlinear operations on the
results to produce output. When it comes to artificial neural networks, they are
typically divided into three layers: an input layer, a hidden layer, and an output layer.
According to its most basic configuration, each of the inputs and its associated weights
is multiplied by the connected weight of its neighboring input. The resulting quanti-
ties and biases pass through activation functions to produce the output.

6. Proposed model

Several different variables influence fuel consumption for haul trucks. The
performance of a typical haul truck is illustrated in Figure 4 by the key factors that
influence it.

Figure 3.
An example of a typical artificial neural network procedure [44].

Figure 4.
Influential critical factors of performance of a typical haul truck.
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The results of this study examined the effects of the Payload (L), Truck Speed (S),
and Total Resistance (TR) on fuel consumption. Burt et al. define the TR as the sum of
the Rolling Resistance (RR) and the Grade Resistance (GR) [45].

TR ¼ RRþ GR (1)

When the characteristics of the tires and the haul roads are considered, this RR can
be used to calculate the Rimpull Force (RF). As the truck tire rolls down the haul road,
the RF measures the resistance to motion in the tire. The GR denotes the gradient of
the haul road. When expressed in percentage, it is determined by the relationship
between the rise of the road and the horizontal length. The truck’s Fuel Consumption
(FC) can be calculated with the help of Eq. (2) [46]:

Eq. (2) (Filas 2002) can be used to calculate FC.

FC ¼
SFC

FD
LF:Pð Þ (2)

Where SFC is the engine Specific Fuel Consumption at full power (0.213–0.268 kg/
kW hr) and FD is the Fuel Density (0.85 kg/L for diesel). The simplified version of
Eq. (2) is presented by Runge [47]:

FC ¼ 0:3 LF:Pð Þ (3)

LF is the engine Load Factor and is defined as the ratio of average load to the
maximum load in an operating cycle [48], p is the truck power (kW), and it is
determined by:

P ¼
1

3:6
RF:Sð Þ (4)

The calculation mentioned above method does not work ideally in mine sites. The
calculated consumed fuel by haul trucks using the simple formula same as Eq. (3)
cannot help mine managers, operation team, and other related groups estimate fuel
consumption. The accuracy of proposed straightforward approaches by researchers is
not enough to allow the mine managers to make the correct decisions and improve the
energy efficiency in surface mines. Based on the reasons mentioned above and to solve
the business problem, this chapter introduces an innovative solution using ANN to
predict truck fuel consumption based on the collected data for three effective param-
eters: payload, truck speed, and total resistance.

6.1 Developed ANN model

Biological nodes generate outputs by combining signals from various sources
nonlinearly. A neural network is typically composed of three layers: an input layer,
one or more hidden layers, and an output layer, among other things. In its most basic
form, each input is multiplied by the weight of the connected input, and the result is
passed through the activation functions to generate the output (see Eqs. (5)–(7)).

EK ¼
X

Q

J¼1

WI,J,KXJ þ BI,K

� �

K‐1, 2, … , M (5)
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Where x is the normalized input variable, w is the weight of that variable, i is the
input, b is the bias, q is the number of input variables, and k and m are the counter
and number of neural network nodes, respectively, in the hidden layer.

Figure 5 depicts a simplified representation of the structure of the model devel-
oped in this research. It should be noted that the hidden layer nodes are free to
generate their output using any differentiable activation function they choose.

In general, the activation functions are made up of both linear and nonlinear
equations, depending on the situation. Matrixes Wi,j,k, and bi,k are used to organize
the coefficients associated with the hidden layer in the hidden layer. As an activation
function between the hidden and output layers, Eq. (6) can be used to achieve the
desired result (in this Equation, f is the transfer function).

FK ¼ F EKð Þ (6)

During the output layer’s computation, the hidden layer’s signals are weighted
summed, and the coefficients associated with these weights are organized into three
matrices: Wo,k, and Bo. The network’s output can be calculated using matrix notation,
as shown in Eq. (7).

OUT ¼
X

M

K¼1

WO,KFK

 !

þ BO (7)

It is presented in this chapter the results of a study in which different types of
algorithms were investigated to determine the best back-propagation generating
algorithm. First, let us compare the Levenberg-Marquardt (LM) back-propagation
generating algorithm to other similar algorithms. It has the lowest mean square error
(MSE), Root mean square error (RMSE), and Correlation Coefficient (R2) of any of

Figure 5.
Structure of ANN developed model.
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the algorithms (see Eqs. (8)–(10)). In addition, network generation using the LM
algorithm can be accomplished with the smallest possible Expanded Memory Specifi-
cation (EMS) and a quick generating process by using the LM algorithm. The statisti-
cal criteria MSE, RMSE, and R2 are used to evaluate the accuracy of the results in
accordance with the following Equations (Ohdar and Pasha 2003 and Poshal and
Ganesan 2008), which are as follows:

MSE ¼
1

p

X

p

r¼1

yr � zr
� �2

(8)

RMSE ¼
1

p

X

p

r¼1

yr � zr
� �2

 !1
2

(9)

R2 ¼ 1�

Pp
r¼1 yr � zr
� �2

Pp
r¼1 yr � y
� �2 (10)

Where y denotes the target (actual), z denotes the output (estimated) of the
model, (y denotes the average value of the targets, and p denotes the number of
network outputs). To examine the error and performance of the neural network
output, the MSE and R2 methods were used. In addition, the LM optimization algo-
rithm was used to determine the optimal weights for the network.

The proposed ANN model for function approximation has the structure of a feed-
forward multi-layer perceptron neural network with three input variables and a single
output. One or more hidden layers of sigmoid nodes are frequently found in the feed-
forward network, tracked by an output layer of linear nodes. Nodes with nonlinear
activation functions are arranged in multiple layers, allowing the network to learn the
linear and nonlinear connections between the input and output vectors over time. The
linear output layer enables the network to generate values outside the [�1,+1] range
using a linear function. The activation functions in the hidden layer (f) are the
continuous differentiable nonlinear tangents sigmoid presented by Eq. (11).

f ¼ tan sig Eð Þ ¼
2

1þ exp �2Eð Þ
� 1 (11)

When determining the optimal number of nodes in the hidden layer, MSE and R2

were calculated for various hidden layer densities to determine their optimal number
of nodes. For 15 nodes in the hidden layer, the minimum MSE and the maximum R2

(best performance) were discovered, resulting in the best overall performance (as
shown in Figure 6).

To train the ANN model, 4600 pairing data points were randomly selected from
the 6630 values of the site data that had been gathered for this study (A large surface
mine located in central Queensland, Australia). The values of payload, Vmax, and TR
were calculated from the site data and used to train the ANN model, which was then
used to calculate the fuel consumption from the site data.

As shown in Figure 7, the variation of MSE occurs during the network
training process: it can be seen that the error approaches zero after 25 epochs, which
indicates that the desired network convergence was achieved during the training
process.
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Approximately 2030 independent samples were used to evaluate the accuracy of
the network and validate the model. The test results of the synthesized network are
depicted in Figure 8, where the vertical and horizontal axes represent the estimated
fuel consumption values by the model and the actual fuel consumption values,
respectively, and the vertical and horizontal axes represent the actual fuel consump-
tion values.

Figure 8 illustrates the accuracy of the developed model. The results show more
than 85% accuracy, which is acceptable for a mining application using unstructured
noisy data collected from a real mime site.

Figure 6.
The performance of the network at different hidden nodes using the LM algorithm.

Figure 7.
Neural network error diagram (MSE) during network training.
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For a standard range of loads, Figure 9 shows the correlation between Payload,
Truck Speed, Total Resistance, and FCIndex created by the constructed ANN model for
CAT 793D tested in a coal surface mine in central Queensland, Australia.

The results show that ANN could correctly predict the fuel consumed by haul
trucks in different conditions. As a result, there are different ranges of consumed fuel
for different haul road conditions. Figure 9 also shows that there is the minimum area
for consumed fuel in all tested scenarios. This minimum area is located close to the
maximum recommended payload for the truck. It means that loading the truck with
the recommended weight can help the mine managers to reduce fuel consumption.

Figure 8.
Comparison of actual values with network outputs for test data (first quarter bisector).

Figure 9.
Correlation between Payload, S,T.R., and FCIndex based on the developed ANN model for CAT 793D.
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The developed application also tested for a Komatsu truck (HD785) to validate the
model for different truck’s specifications. Figure 10 shows the results of model testing
for the Komatsu truck.

The minimum areas highlighted by the presented graphs in Figures 9 and 10
illustrate the potential of deploying optimization algorithms aimed to improve energy
efficiency in surface mines. This concept can be a title for further investigations and
studies in the future.

7. Conclusion

As old industry mining uses traditional approaches to solve the business problem,
energy efficiency improvement is one of the most critical challenges in the mining
industry. Mine managers and researchers can benefit from digital transformation and
data access by utilizing innovative data-driven solutions such as machine learning and
artificial intelligence. This chapter presented a practical framework and developed an
artificial neural network algorithm to predict the consumed fuel by haul trucks in
surface mines. The successful results of deploying this application in different mines
sites have opened a new window for researchers to use the sophisticated AI models to
tackle the mining operation challenges. This chapter showed the prediction results for
diesel consumption, and it is clear that the prediction is the starting point of advanced
analytics. The developed model was used in a large surface mine in Australia and
tested on two different trucks (CAT 793D and Komatsu HD785). For both tested
trucks, the accuracy of developed mold was reported more than 85%, an acceptable
result for a sophisticated AI model that unstructured and noisy datasets have fed.
There are more opportunities to use AI to optimize and make decisions to increase
energy efficiency in mining engineering.

Figure 10.
Correlation between gross vehicle weight, S,T.R., and FCIndex based on the developed ANN model for Komatsu
HD785.
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