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Abstract 

The aim of the research presented in this paper was to develop the features of a Genetic Algorithm (GA) to 

optimise the external-wall insulation in residential buildings.  

In this paper, a new optimal design method is proposed for saving energy in buildings. This method provides 

the most efficient energy consumption for building external shell and it will be useful to reduce CO2 

emission in the future all over the world. Specifically for this paper, the authors applied this method for a 

sample building as a case study. The GA optimization method, which can resolve nonlinear optimization 

problems, is adopted for this optimization analysis. In addition, its applicability is analysed in a case study. 

In order to validate the accuracy of this method, all results are simulated by E.S.A.M software and the 

results can certify the validity of this method. The results show that the proposed method is sufficiently 

capable of determining the optimal insulation for external walls. This paper reviews the basics of GAs, 

emphasizing on making a new synthetic insulation. 
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1. Introduction 

1.1.Energy consumption in building  

In these days, energy conservation is a popular topic in building industry all over the world. It is now 

attracting a great deal more attention throughout the world with regard to environmental preservation of the 

Earth [6]. In recent decade, a number of high-energy efficiency equipment have been developed for 

example, triple-effect absorption refrigerators, cogeneration systems, etc. [3]. In addition, the operation 

culture has changed especially in developed country and most people know that energy consumption is 

highly dependent on the combination and operation of the equipment used [5]. Therefore, the best result for 

saving energy in building can be achieved by suitable construction and good operation as well [23]. There 

are a lot of researches on making a solution for energy consumption by external walls in building and in 

order to resolve these problems many researchers around the world tried to present some offers on building 

insulation.  

Over the recent few years, greenhouse gas reduction and energy consumption have become climactically a 

worldwide challenge [7]. Apart from the domestic buildings, commercial and industrial sectors make a 

significant contribution to the climbing levels of energy consumption and greenhouse gas emissions. 

Since over 40% of the energy used in most countries is used to heat or cool buildings [9], and the major part 

of this energy is consumed as heat loss of external walls [15], the prediction of building energy consumption 

has, therefore, played an very important role in national energy use in each country and building energy 



efficiency is of prime concern [22]. Identifying energy savings is becoming an increasingly important yet 

challenging task [16]. 

In order to improve the energy efficiency of buildings, architects, building designers and facility managers 

require effective tools for designing, analysing and maintaining the building energy configurations. 

Simulating building energy consumption especially in external wall element is a key to the study of energy 

efficiency in buildings [8]. Conventionally, building energy consumption patterns have been modelled in 

terms of mathematical/empirical equations which are obtained through rigorous building energy simulations 

[20]. This typically involves a thorough study of the critical system parameters and their effects on the 

annual energy consumption [11]. 

 

1.2. R-Value 

The R-value is a measure of thermal resistance used in the building and construction industry. Under 

uniform conditions, it is the ratio of the temperature difference across an insulator (∆T) and the heat flux1 

[19]. 

In most countries, R-values are given in SI units, typically square-metre kelvins per watt or   m². K/W (or 

equivalently, m². °C/W) [19]. 

Increasing the thickness of an insulating layer increases the thermal resistance. 

The R-value is a measure of an insulation sample's ability to reduce the rate of heat flow under specified test 

conditions. The primary mode of heat transfer impeded by insulation is conduction, but insulation also 

reduces heat loss by all three heat transfer modes: conduction, convection, and radiation [19]. 

In calculating the R-value of a multi-layered installation, the R-values of the individual layers are added, 

which is illustrated as follow:  

R-value (total) = R-value (outside air film) + R-value (body) + R-value (sheathing) 

+ R-value (insulation) + R-value (plasterboard) + R-value (inside air film) 

 

An important subject to R-value calculation is humidity; commonly there is a reverse relationship between 

R-value and humidity. In other words, when humidity increases R-value decreases.  

1.3.Different insulation types 

The maximum thermal performance or R-value of insulation is very dependent on proper installation. In 

order to select a suitable insulation we should consider several forms of insulation, their R-values, and the 

thickness needed. 

There are four types of insulations: 

 

1.3.1. Rolls and batts 

Blanket insulation comes in the form of batts or rolls. They are flexible products made of mineral fibbers, 

including fiberglass or rock wool. They are available in different widths suited to standard spacing of wall 

studs and attic2 or floor joists. Batts with a special flame-resistant facing are available in various widths for 

basement walls where the insulation will be left exposed. Figure (1) 

 

1.3.2. Loose-fill 

Blown-in loose-fill insulation includes cellulose, fiberglass, or rock wool in the form of loose fibbers or 

fibber pellets that can be used by pneumatic equipment, usually by professional installers. This form of 

 
1 Heat transfer per unit area, QȦ through it or  R = ∆T QȦ⁄   
2 section of a house below the roof; low wall at the top of a classical building which hides the roof; 

(1) 

http://en.wikipedia.org/wiki/Thermal_resistance
http://en.wikipedia.org/wiki/Construction
http://en.wikipedia.org/wiki/Heat_flux
http://en.wikipedia.org/wiki/SI
http://en.wikipedia.org/wiki/Kelvin
http://en.wikipedia.org/wiki/Watt


insulation can be used in wall cavities. It is also appropriate for unfinished attic floors, for irregularly shaped 

areas, and for filling in around obstructions. Figure (2) 

 

1.3.3. Rigid foam 

Rigid insulation is made of fibrous materials or plastic foams and is produced in board-like forms and 

melded pipe coverings. These provide full coverage with few heat loss paths and are often able to provide a 

greater R-value where space is limited. Such boards may be faced with a reflective foil that reduces heat 

flow when it is next to an air space. Rigid insulation is often used for foundations. Figure (3) 

 

1.3.4. Foam-in-place 

Foam-in-place insulation can be blown into small areas to control air leaks, like those around windows, or 

can be used to insulate an entire house. Foam insulation can be applied by a professional using special 

equipment to meter, mix, and spray the foam into place. Figure (4) 

 

 

 

 

 

 

 

 
Figure (1) Roll and Batts3         Figure (2) Loose-Fill4           Figure (3) Rigid Foam5          Figure (4) Foam-in-place6 

 

 

The different forms of insulation can be used together. For example, we can add batt or roll insulation over 

loose-fill insulation. Usually, material of higher density7 should not be placed on top of lower density 

insulation that is easily compressed. Doing so will reduce the thickness of the material underneath and 

thereby lower its R-value.  

 

1.4.Genetic Algorithm 

 

Genetic Algorithm (GA) provides a method for solving optimization problems by imitating the evolutionary 

process based on the mechanics of Darwin’s natural selection [1]. GAs are the search methods based on 

principles of natural selection and genetics. Goldberg described the usual form of genetic algorithm; GA has 

been applied to a diverse range of scientific, engineering and economic problems [21].  

A genetic algorithm (GA) is a search technique used in computing to find solutions for optimization 

problems. Genetic algorithms can be categorized as Meta heuristics with global perspective [1]. 

Recently, genetic algorithms have received considerable attention regarding their potential as an 

optimization technique for complex problem and have been successfully applied in the area of industrial 

engineering [10]. Genetic algorithms are implemented as a computer simulation to find better solutions.  

GAs encode the decision variables of a search problem into finite-length strings of alphabets of certain 

cardinality. The strings which are candidate solutions to the search problem are referred to as chromosomes. 

The alphabets are referred to as genes and the values of genes are called alleles. In contrast to traditional 

optimization techniques, GAs work with coding of parameters, rather than the parameters themselves [13]. 

To evolve good solutions and to implement natural selection, we need a measure for distinguishing good 

 
3 Source: http://www.goodrichlumber.com 
4 Source: http://www.archiexpo.com 
5 Source: http://www.diyexplore.com 
6 Source: http://www.buildipedia.com 

7 Weight per unit volume (ρ) 

http://www.goodrichlumber.com/
http://www.archiexpo.com/
http://www.diyexplore.com/
http://www.buildipedia.com/


solutions from bad solutions. The measure could be an objective function that is a mathematical model or a 

computer simulation, or it can be a subjective function where humans choose better solutions over worse 

ones [14]. In essence, the fitness measure must determine a candidate solution’s relative fitness, which will 

subsequently be used by the GA to guide the evolution of good solutions. Another important concept of GAs 

is the notion of population. Unlike traditional search methods, genetic algorithms rely on a population of 

candidate solutions [18]. The population size, which is usually a user-specified parameter, is one of the 

important factors affecting the scalability and performance of genetic algorithms. Once the problem is 

encoded in a chromosomal manner and a fitness measure for discriminating good solutions from bad ones 

has been chosen, the evolution usually starts from a population of randomly generated individuals and 

happens in generations. In each generation, the fitness of every individual in the population is evaluated, 

multiple individuals are stochastically selected from the current population (based on their fitness), and 

modified to form a new population. The new population is then used in the next iteration of the algorithm. 

Commonly, the algorithm terminates when either a maximum number of generations has been produced, or 

a satisfactory fitness level has been reached for the population. 

 

1.4.1. Genetic Algorithm Vocabulary 

Since genetic algorithms are rooted in both natural genetics and computer science, the terminologies used in 

genetic algorithm literature are mixture of the natural and the artificial science [2]. The correspondence of 

genetic algorithm terms and optimization terms is summarized in Table (1). 

 
Table (1) Explanation of Genetic Algorithm Terms 

 

Genetic Algorithms Explanation 

Chromosome (String, Individual) Solution  (Coding) 

Genes (Bits) Part of solution 

Locus Position of gene 

Alleles Values of gene 

Phenotype Decoded solution 

Genotype Encoded solution 

 

 

1.4.2.  Genetic Algorithm Terminology 

This paragraph explains some basic terminologies for genetic algorithm: 

 

• Fitness Function 

The fitness function is the function you want to optimize. For standard optimization algorithms, this is 

known as the objective function. 

 

• Individuals 

An individual is any point to which you can apply the fitness function. The value of the fitness function for 

an individual is its score. An individual is sometimes referred to as a genome and the vector entries of an 

individual as genes. 

 

• Populations and Generations 

A population is an array of individuals. At each iteration, the genetic algorithm performs a series of 

computations on the current population to produce a new population. Each successive population is called a 

new generation. 

 

 

 



• Diversity 

Diversity refers to the average distance between individuals in a population. A population has high diversity 

if the average distance is large; otherwise, it has low diversity. 

 

• Fitness Value 

The fitness value of an individual is the value of the fitness function for that individual. 

 

• Parents and Children 

To create the next generation, the genetic algorithm selects certain individuals in the current population, 

called parents, and uses them to create individuals in the next generation, called children. Typically, the 

algorithm is more likely to select parents that have better fitness values. 

 

1.4.3. Genetic Algorithms’ steps 

We can start to evolve solutions to the search problem using the following steps: 

 

• Initialization 

The initial population of candidate solutions is usually generated randomly across the search space. 

However, domain-specific knowledge or other information can be easily incorporated. 

 

• Evaluation 

 Once the population is initialized or an offspring population is created, the fitness values of the candidate 

solutions are evaluated [1]. 

 

• Selection 

Selection allocates more copies of those solutions with higher fitness values and thus imposes the survival-

of-the-fittest mechanism on the candidate solutions. The main idea of selection is to choose better solutions 

out of worse ones, and many selection procedures have been proposed to accomplish this idea, including 

roulette-wheel selection, stochastic universal selection, ranking selection and tournament selection, some of 

which are described in the next section [1]. 

 

• Recombination 

Recombination combines parts of two or more parental solutions to create new, possibly better solutions (i.e. 

offspring). There are many ways of accomplishing this (some of which are discussed in the next section), 

and competent performance depends on a properly designed recombination mechanism. The offspring under 

recombination will not be identical to any particular parent and will instead combine parental traits in a 

novel manner [1]. 

 

• Mutation 

While recombination operates on two or more parental chromosomes, mutation locally but randomly 

modifies a solution. Again, there are many variations of mutations, but it usually involves one or more 

changes being made to an individual’s trait or traits. In other words, mutation performs a random walk in the 

vicinity of a candidate solution [1]. 

 

• Replacement 

The offspring population created by selection, recombination, and mutation replaces the original parental 

population. The algorithm usually selects individuals that have better fitness values as parents. The genetic 

algorithm creates three types of children for the next generation [21]: 

 



- Elite children are the individuals in the current generation with the best fitness values. These individuals 

automatically survive to the next generation. 

 

- Crossover children are created by combining the vectors of a pair of parents. 

 

- Mutation children are created by introducing random changes, or mutations, to a single parent. 

 

The following schematic diagram illustrates the three types of children. 

 

 

 

 

 
Figure (5) Three types of children for the next generation 

 

1.4.4.  Stopping Conditions for the Algorithm 

The genetic algorithm uses the following five conditions to determine when to stop [21]: 

 

• Generations 

The algorithm stops when the number of generations reaches the value of Generations. 

 

• Time limit 

The algorithm stops after running for an amount of time in seconds equal to Time limit. 

 

• Fitness limit 

The algorithm stops when the value of the fitness function for the best point in the current population is 

less than or equal to Fitness limit. 

 

• Stall generations 

The algorithm stops if there is no improvement in the objective function for a sequence of consecutive 

generations of length Stall generations. 

 

• Stall time limit 

The algorithm stops if there is no improvement in the objective function during an interval of time in 

seconds equal to stall time limit. 

 

The algorithm stops as soon as any one of these five conditions is met. The searching procedure of GA is 

shown in Figure (6). 
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Figure (6) The flow diagram of a GA optimization model 

 

1.4.5.   Differences of Genetic Algorithm 

Genetic algorithms differ from conventional optimization and search procedure in several fundamental ways 

as follows [17]: 

 

• GAs work with a coding of solution set, not the solutions themselves. 

• GAs search from a population of solutions, not a single solution 

• GAs use payoff information (Fitness Function), not derivative or other auxiliary knowledge 

• GAs use probabilistic transition rules, not deterministic rules 

 

1.4.6.   Major Advantages of GAs 

Genetic algorithms have received considerable attention regarding their potential as a novel optimization 

technique. There are three major advantages when applying genetic algorithms to optimization problems 

[24]. 

 

• GAs do not have much mathematical requirements about the optimization problems. Due to their 

evolutionary nature, genetic algorithms will search for solutions without regarding the specific inner 

workings of the problem. GAs can handle any kind of objective functions and any kind of constraints 

(i.e., linear or nonlinear) defined on discrete, continuous or mixed search spaces. 

• The periodicity of evolution operators makes genetic algorithms very effective at performing global 

search (in probability).  

• GAs provide us a great flexibility to hybridize with domain dependent heuristics to make an efficient 

implementation for a specific problem. 

 

1.5. E.S.A.M Software 

E.S.A.M 2.1is an up-to-date, computer program that simulates the hourly energy usage of a building given 

hourly weather information and a description of the building. It requires an input text file featuring all the 

necessary parameters and details that describe the building and its systems; and readable by E.S.A.M 2.1. 

This software is linked to AutoCAD Software and it can read building data from CAD files. The first 

version of this software was created by SAMAN energy Co in 2002 and it has been developed and 

completed until now.  The last version of this software (E.S.A.M 2.1) can simulate all building energy 
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parameters in different conditions. In this project we could simulate energy consumption by different kinds 

of external-wall materials. That computer software was used for calculation heat loss in a real case study. 

All results compared with other software (Carrier and DOE 2.2) and the errors were eliminable. 

 

2. Previous Studies 

GA is well suited to handle complicated optimization problems with nonlinear, discrete and constrained 

search spaces.  

- Huang and Lam [2] and also Fong et al. [3] adopted GA (or evolutionary programming) to solve heating, 

ventilating and air-conditioning (HVAC) control problems.  

- Obara and Kudo [4] applied this GA method to control problems of energy systems consisting of fuel 

cells, thermal storage, heat pumps, etc.  

- Write et al. [5] applied GA to investigate multi objective problems to identify the optimal building 

materials.  

- Hongwei et al. [25] applied GA to mix integer and nonlinear programming problems in an energy plant 

in Beijing, and made a detailed economic investigation by changing the economic and environmental 

legislative contexts. 

Since some researchers focus on both equipment selection (type of equipment, capacity size, etc.) and 

system operational control planning [12], in this paper, a new optimal design method to control energy 

consumption in external walls is proposed. This method optimizes the thickness of material to make a 

multilayer insulation. This method will be helpful for engineers who design external shells for buildings. 

 

 

3. Experimental Setup 
 

In order to do this project a series of planned experiments was run in the energy laboratory at the Isfahan 

Construction Engineering Organization. The experiments made use of the NECH Germany and Starbucks 

Switzerland insulation laboratory units. The thermal conductivity indicator machine is also equipped with 

the digital monitor to show the temperature and heat flux. This device has linked with a computer and this 

allows accurate digital temperature and heat flux reading to three decimal places to be recorded in real time 

by the attached data logger and supplied computer software. 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

Figure (7) Energy laboratory devices 
 

In order to do this research project four types of insulation were used. Some of these insulation materials 

usually are used in external walls in buildings. The technical details of those are illustrated in Table (2).   

 

 

 

 

 
 



Table (2) Technical details of insulation materials 

 

Insulation Material Density (ρ) kg/m3 Thermal Conductivity (λ) W/(m.°C) 

Polyurethane Rigid Panel  30 0.030 

Polystyrene Board (HCFC)  35 0.035 

Phenolic Rigid Panel  100 0.400 

Rock Wool  20 0.047 

Glass Wool  10 0.054 
 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 

Figure (8) Polyurethane8                   Figure (9) Polystyrene-Foam-Board9                    Figure (10)  Phenolic10 

 

 
 

 

 
 

 

 

 

 

 

 

 
 
            Figure (11) Rock-Wool-Board11                                              Figure (12) Glass-Wool12 

 

 

4. Results and discussions 

4.1.Error Analysis 

The graph in Figure (13) clearly shows the error analysis in this project. As is shown by the graph, the 

difference temperature (∆T) has remained constant with some fluctuations. 

When we started collecting data, the difference temperature increased to reach a peak of nearly 3°C in the 

first 10 minute. Afterwards it fluctuated at around 3oC for approximately 40 minutes. In that period the heat 

flux was 0.81 Watt constantly. 

This graph can show that we can analyse data easily and the mean value of data in the period is 3 oC and 

another statistic parameter (standard deviation) is 0.06. 

 

 
8 Source: http://www.archiexpo.com 
9 Source: http://www.artgrafix.com 
10 Source: http://www.diytrade.com 
11 Source: http://www.tradeindia.com 
12 Source: http://www.dahongchem.com 



 
 

Figure (13) Difference Temperature Error Analysis 

 

4.2.Calibration 

 

As it mentioned before, for doing the tests a thermal conductivity indicator machine was used. For 

calibration we used two types of glass wool. One of them named original insulation was tested by 

Department of Energy that is a reference of standard documents and insulation materials in country. Another 

material was normal glass wool available in insulation materials markets. 

The graph illustrated in Figure(14), showes changes in the amount of heat flux between two insulation 

materials. 

While X-axis in this graph showes the difference temprature (∆T), Y-axis represents heat flux. As it can be 

seen by the graph, after starting point , there was an up-ward trend and the graph of original glass wool has 

gone up significantly and and the  line of tested glass wool has followed the previous graph as well. All 

neccesary equations are shown in this figure. 

As a whole, using this calibration method will be very easy in this project and the result of this calibration is 

shown in Figure (15). 

 

Figure (14) Calibration (Glass Wool) 
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As is illustrated by the Figure (15), we can use a linear trendline to calibrate indicator machine. 

In this graph, it can be seen that, there is a linear relationship between difference temperature measured by 

using tested insulation and original material, therefor, by using this relationship and calibration equation , we 

can calibrate all data and use correct information for calculation. 

The trendline in this excrement was an upward trend with using data from calibration area Figure (14). 

 

Figure(15) Calibration trendline and equation 

 

4.3.R-Value calculation for single layer Insulation 

All types of insulation materials in this project are tested by laboratory unit and all results are illustrated in 

Figure (16) and Figure (17). It should be mentioned that the thickness of all samples were 20 cm. As it can 

be seen in the following figures, we can calculate the R-value for  all samples13 by using trendline equations. 

All results are placed in Table (3). 

 

Figure (16) R-Value Results 

 
13 Heat flux (q)=∆T/R-value 
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Figure (17) R-Value Result for Phenolic 

 

Table (3) The Results of R-Value 

Insulation Type R-Value14  (m2. °C/W) 

Polyurethane Rigid Panel  6.667 
Polystyrene Board (HCFC)  5.714 
Phenolic Rigid Panel  0.500 
Rock Wool  4.255 
Glass Wool  3.704 

 

 

4.4.The effect of humidity on R-Value 

A major source of decreasing R-Value in external walls is humidity. Water can influence on insulation 

materials and increases the thermal conductivity in humid weather condition. This issue usually is occurred 

in winter and increases the heat loss.  

To survey the effect of humidity on R-Value in insulation material six steps of humidity condition were 

simulated and the results are illustrated in Table (4) and Figure (18). 

Table (4) The effect of humidity on R-Value 

Weight of water (gr) 0 30 50 70 100 150 GRADIENT 

Insulation Type 

Polyurethane Rigid Panel  6.667 5.017 3.917 2.817 1.167 -1.583 -0.055 

Polystyrene Board (HCFC)  5.714 4.214 3.214 2.214 0.714 -1.786 -0.050 

Phenolic Rigid Panel  0.500 0.410 0.350 0.290 0.200 0.050 -0.003 

Rock Wool  4.255 3.055 2.255 1.455 0.255 -1.745 -0.040 

Glass Wool  3.704 2.654 1.954 1.254 0.204 -1.546 -0.035 

 

 
14 Thickness = 20 cm 
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Figure (18) The effect of humidity on R-Value 

As it can be shown by Figure (18), all gradients are negative; therefore, R-Value for all materials in this 

project decreased when the humidity increased. 

Improving the quality of R-Value in multilayer insulation in humid condition is a major aim of this research. 

 

4.5.Optimization of thermal resistance by using GA 

 

The insulation equation for optimization is given as follows: 
 

Max R (x1, x2, x3, x4, x5) = 
𝑥1

𝛌1
+

𝑥2

𝛌2
+

𝑥3

𝛌3
+

𝑥4

𝛌4
+

𝑥5

𝛌5
         (2) 

 

 

0.02 ≤ x1≤0.05 , 0.02 ≤ x2≤0.06 , 0.02 ≤ x3≤0.05 , 0.03 ≤ x4≤0.05 , 0.02 ≤ x5≤0.06 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (19) Multilayer Insulation 
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• Representation 

First, we need to encode decision variables into binary strings. The length of the string depends on the 

required precision. For this project, the unit of variables in main equation is meter and for more accuracy in 

Genetic algorithm’s process, we changed the unit in to millimetre. Each variable in this paper needs six bits 

in chromosome string to convert from decimal to binary code then the total length of chromosome is 30 bits 

which can be represented as follows: 

 

 
 

Figure (20) Chromosome  

 

 

• Initial Population 

 Initial population is randomly generated and illustrated in Table (5). 

 

 
Table (5) Initial Population elements in Barney mode 

 

X1 X2 X3 X4 X5 

011110 011110 101000 110010 110010 

110010 110010 011110 101000 011110 

101000 011110 101000 101000 110010 
010100 101000 011110 110010 111100 
011110 101000 011110 101000 111100 
110010 010100 110010 011110 110010 
101000 111100 011110 011110 101000 
101000 011110 011110 110010 110010 
011110 101000 011110 101000 111100 
011110 010100 110010 101000 111100 

 

 

 

According to Table(5), all chromosomes as an initial population is shown below: 
 

V1= [011110011110101000110010110010];  

V2= [110010110010011110101000011110];  

V3= [101000011110101000101000110010];  

V4= [010100101000011110110010111100];  

V5= [011110101000011110101000111100];  

V6= [110010010100110010011110110010];  

V7= [101000111100011110011110101000];  

V8= [101000011110011110110010110010];  

V9= [011110101000011110101000111100];  

V10= [011110010100110010101000111100]. 

 

 

 

 

 



Table (6) Initial Population decimal values 

 X1 (mm) X2 (mm) X3 (mm) X4 (mm) X5 (mm) 

V1 (x1, x2, x3, x4, x5) 30 30 40 50 50 

V2 (x1, x2, x3, x4, x5) 50 50 30 40 30 

V3 (x1, x2, x3, x4, x5)  40 30 40 40 50 

V4 (x1, x2, x3, x4, x5)  20 40 30 50 60 

V5 (x1, x2, x3, x4, x5)  30 40 30 40 60 

V6 (x1, x2, x3, x4, x5)  50 20 50 30 50 

V7 (x1, x2, x3, x4, x5)  40 60 30 30 40 

V8 (x1, x2, x3, x4, x5)  40 30 30 50 50 

V9 (x1, x2, x3, x4, x5)  30 40 30 40 60 

V10 (x1, x2, x3, x4, x5)  30 20 50 40 60 

 

 

• Evaluation 

The process of evaluating the fitness of a chromosome consists of the following three steps: 

 

- Step1. Convert the chromosome’s gene type to its phenotype. Here, this means converting binary string 

into relative real values.  

 

- Step2. Evaluate the objective function.  

 

- Step3. Convert the value of objective function into fitness. For the maximization problem, the fitness is 

simply equal to the value of objective function.  

 

The fitness function values of chromosomes are as follows:  

 
Table (7) Fitness function values 

Chromosomes Fitness Function Value (R-Value) m2.k/W 

V1 3.95 

V2 4.58 

V3 4.07 

V4 4.06 

V5 4.18 

V6 3.93 

V7 4.50 

V8 4.26 

V9 4.18 

V10 3.66 

 

It is clear that chromosome V2 is the strongest one and that chromosome V10 is the weakest one.  

 

• Selection 

In most practices, a Roulette Wheel is used for selection procedure; it can select a new population with 

respect to the probability distribution based on fitness values. The roulette wheel can be constructed as 

follows;  

 

 

 

 

 

 

 

 



1. Calculate the total fitness value eval (Vk) for each chromosome Vk:  

 

eval (Vk) = f(x),                     k=1, 2, …, pop-size                    (3) 

 

2. Calculate the total fitness for the population: 

 

 

𝐹 = ∑ 𝑒𝑣𝑎𝑙 (𝑉𝑘)

𝑝𝑜𝑝−𝑠𝑖𝑧𝑒

𝑘=1

 

 

 

3. Calculate selection probability pk for each chromosome Vk:  

 

p𝒌 =  
eval (𝑉𝑘)

F
 ,                               K = 1, 2, … , pop − size 

 

4. Calculate cumulative probability qk for each chromosome Vk: 

 

 

𝑞𝑘 = ∑ 𝑝𝑗

𝑘

𝑗=1

             k = 1, 2, … , pop − size 

 

 

The selection process begins by spinning the roulette wheel pop-size times; each time, a single chromosome 

is selected for a new population in the following way;  

 

 

Step 1.  

Generate a random number from the range [0,1]. 

 

Step 2.  

If  r ≤ q1 , then select the first chromosome V1 ; otherwise, select the K th chromosome 

 

Vk (2 ≤  K  ≤  pop-size) such that qk-1 < r < qk . 

 

The total fitness F of the population is 

 

F =  ∑ 𝑒𝑣𝑎𝑙 (𝑉𝑘) = 41.27               
𝑚2. 𝑘

𝑊

10

𝑘=1

 

 

The probability of a selection pk for each chromosome Vk (k=1, 2, …, 10) is shown in Table(8). 
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(7) 



 
Table (8) P-factor for chromosomes 

 

P-factor Value 

P1 0.095443 

P2 0.110676 

P3 0.098358 

P4 0.098165 

P5 0.101080 

P6 0.094969 

P7 0.108858 

P8 0.102899 

P9 0.101080 

P10 0.088471 

 

 

The cumulative probabilities qk for each chromosome Vk (k=1, 2, …, 10) is shown in Table(9). 

 
 

Table (9) Q-factor for chromosomes 

 

q-factor  Value  

q1 0.095443 

q2 0.206119 

q3 0.304477 

q4 0.402642 

q5 0.503722 

q6 0.598692 

q7 0.707550 

q8 0.810448 

q9 0.911529 

q10 1.000000 

 

 

 

Now we are ready to spin the roulette wheel 10 times, and each time we select a single chromosome for a 

new population. The results of that action is as follows: 

 

Table (10) Roulette Wheel Results 

 

R Value 

R1 0.301431 

R2 0.322062 

R3 0.766503 

R4 0.881893 

R5 0.350871 

R6 0.583392 

R7 0.177618 

R8 0.343242 

R9 0.032685 

R10 0.197577 

 

 

The first number R1=0.301431 is greater than q2 and smaller than q3, meaning that the chromosome V3 is 

selected for the new population; the second number R2= 0.322062 is greater than q3 and smaller than q4, 

meaning that the chromosome V4 is selected for new population; and so on. Finally, the new population 

consists of the following chromosomes: 

  

 

 

 



V’1 = [101000011110101000101000110010] (V3);  

V’2 = [010100101000011110110010111100] (V4);  

V’3 = [101000011110011110110010110010] (V8);  

V’4 = [011110101000011110101000111100] (V9);  

V’5 = [010100101000011110110010111100] (V4);  

V’6 = [110010010100110010011110110010] (V6);  

V’7 = [110010110010011110101000011110] (V2);  

V’8 = [010100101000011110110010111100] (V4);  

V’9 = [011110011110101000110010110010] (V1);  

V’10 = [110010110010011110101000011110] (V2); 

 

• Crossover 

Crossover used here is one-cut-point, which randomly selects one cut-point and exchanges the right parts of 

two parents to generate offspring. Consider two chromosomes as follows, and the cut-point is randomly 

selected after the 15th gene: 

 

V1 = [011110011110101 000110010110010]  

V2 = [110010110010011 110101000011110]  

 

The result of offspring by exchanging the right parts of their parents would be as follows:  
 

V’1 = [011110011110101110101000011110]  

V’2 = [110010110010011000110010110010]  

 

The probability of crossover is set as Pc = 0.25, so we expect that, on average, 25% of chromosomes 

undergo crossover. Crossover is performed in the following way:  

 

begin  

k=0;  

while (k≤10) do 

rk =random number from [0, 1];  

if (rk <0.25) then  

select Vk as one parent for crossover;  

end  

k=k+1:  

end  

end 

 

In this project the sequence of random numbers is: 
 

0.625721,   0.266823,   0.288644,  0.295114,  0.163274,  0.567461,   0.085940,   0.392865,  0.770714,  0.548656 

 

This means that the chromosomes V’5 and V’7 were selected for crossover. We generate a random integer 

number position from the range [1, 29] (because 30 is the total length of a chromosome) as cutting point or 

in other words, the position of the crossover point.  

 



• Mutation 

Mutation alters one or more genes with a probability equal to the mutation rate. Assume that the 18th gene of 

the chromosome V1 is selected for a mutation. Since the gene is 0, it would be flipped into 1. Thus the 

chromosome after mutation would be  

 

V’1 = [01111001111010100 0 110010110010]  

 

V’1 = [01111001111010100 1 110010110010] 

 

The probability of mutation is set as Pm = 0.01, so we expect that, on average, 1% of total bit of population 

would undergo mutation. There are m × pop-size = 30 × 10 = 300 bits in the whole population; we expect 3 

mutation per generation. Every bit has an equal chance to be mutated. Thus we need to generate a sequence 

of random numbers rk(k=1,… ,300) that is illustrated in Table (11). 

Table (11) Mutation randomize  

Bit Position Chromosome Number Bit Number 

105 4 15 

164 6 14 

201 7 21 

 

After mutation, we get the final population as follows:  
 

V”1 = [011110101000011110110010110010];  

V”2 = [110010111100010100101000011110];  

V”3 = [110010011110011110101000110010];  

V”4 = [011110101000010100110010111100];  

V”5 = [101000011110010100110010111100];  

V”6 = [110010010100101000101000110010];  

V”7 = [110010111100010100011110101000];  

V”8 = [101000101000010100110010110010];  

V”9 = [011110110010010100110010110010];  

V”10 = [011110011110101000101000111100];  

 

The corresponding decimal values of variables [X1, X2, X3, X4, X5] and fitness are as follows:  
 

R1 (30, 40, 30, 50, 50) = 4.21       m2.°C /W  

R2 (50, 60, 20, 40, 30) = 4.84       m2.°C /W 

R3 (50, 30, 30, 40, 50) = 4.38       m2.°C /W 

R4 (30, 40, 20, 50, 60) = 4.37       m2.°C /W 

R5 (40, 30, 20, 50, 60) = 4.42       m2.°C /W  

R6 (50, 20, 40, 40, 50) = 4.12       m2.°C /W 

R7 (50, 60, 20, 30, 40) = 4.81       m2.°C /W 

R8 (40, 40, 20, 50, 50) = 4.52       m2.°C /W 

R9 (30, 50, 20, 50, 50) = 4.47       m2.°C /W 

R10 (30, 30, 40, 40, 60) = 3.92     m2.°C /W 

 

 

 



Table (12) Selected GA Parameters 

Parameter Selected Value 

Population size (individuals) 10 

Number of Generations 1000 

Crossover Probability 0.25 

Mutation Probability 0.01 
 

Now we just completed one iteration of genetic algorithm. Running of the test is terminated after 1000 

generation. We have obtained the best chromosome in 536th generation as follows:  

 
V*=[110010111100010100110010010100]  

 

eval (V*) = R(5, 6, 2, 5, 2) = 4.87 m2.°C/W 

X*1 = 50   mm;  

X*2 = 60   mm;  

X*3 = 20   mm;  

X*4 = 50   mm;  

X*5 = 20   mm;  
 

4.6.GA Insulation test Results 

 

After calculations, a sample of multilayer insulation that was suggested by GA made and it was tested in 

humid condition. The results are illustrated in Table(13) and Figure(13). 

 

Table (13) GA insulation test results 

Weight of water (gr) 0 30 50 70 100 150 GRADIENT 

Insulation Type 

G.A   Insulation 4.87 3.97 3.37 2.77 1.87 0.37 -0.03 

 

 
 

Figure (21) GA insulation test results 

 

All previous tests were repeated for new generation of external wall insulation material. The results can 

show that GA method has improved the quality of insulation especially in humid condition. 

 

 

5. Case Study 

In order to examine the applicability of this optimal design method, we used the intentional wall insulation 

in a residential building. In order to achieve new results of this condition we simulated all parameters by 

E.S.A.M software. The technical details are illustrated in Table (14) and Table (15). To clear the local 

situation two Figures (22) and (23) can be useful.  
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Table (14) Technical details 

The Maximum height (Floor to Ceiling)  4 m  

Area  300 m2  

Floor  1  

Thickness of wall Materials  35 cm  
 

Table (15) Technical details of external walls 

External Walls  Wall Direction  Length (m)  Facing material  

1 south 15 Brick 

2 west 20 Brick 

3 North 15 Brick 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (22) The view of case study 

 

 
Figure (23) The plan of case study 

 

Since, the details of external walls material are the aim of this research , all technical parameters for building 

external shell are placed in Table (15),(16) and (17). In this project three types of external wall were 

simulated: 

• External wall without insulation material. Table(15) 

• External wall with normal insulation material. Table(16) 

• External wall with GA insulation material. Table(17) 

 

 

 

 

 

 



Table (15) The details of external wall without insulation 
layer Material & Description Thickness (mm)  Thermal Conductivity (W/m.k) Density (kg/m3) 

1 Facing brick 50 0.80 2000 

2 Air Cavity 20 0.13 - 

3 Concrete Block 100 1.11 1700 

4 Mortar between Block  15 0.46 1500 

5 Plaster 15 0.50 1200 

Expected Thermal transmittance  (W/m2.K) 0.542 
Thermal Resistance  (m2.k/W) 0.369 

 

Table (16) The details of external wall without insulation 
layer Material & Description Thickness (mm)  Thermal Conductivity (W/m.k) Density (kg/m3) 

1 Facing brick 50 0.80 2000 

2 Air Cavity 20 0.13 - 

3 Normal Insulation 200 0.05 10 

4 Concrete Block 100 1.11 1700 

5 Mortar between Block  15 0.46 1500 

6 Plaster 15 0.50 1200 

Expected Thermal transmittance  (W/m2.K) 0.092 
Thermal Resistance  (m2.k/W) 4.369 

 

Table (17) The details of external wall without insulation 
layer Material & Description Thickness (mm)  Thermal Conductivity (W/m.k) Density (kg/m3) 

1 Facing brick 50 0.80 2000 

2 Air Cavity 20 0.13 - 

3 GA Insulation 200 0.04 29 

4 Concrete Block 100 1.11 1700 

5 Mortar between Block  15 0.46 1500 

6 Plaster 15 0.50 1200 

Expected Thermal transmittance  (W/m2.K) 0.075 
Thermal Resistance  (m2.k/W) 5.369 

 

To calculate the total energy consumption in each building we used the E.S.A.M software and all results are 

illustrated in Table(18). It is clear that by using normal insulation we can save a large amount of energy in 

this case study but an important result is that by using GA method we could increase the saving from 31% to 

50%. 

 

Table (18) E.S.A.M Software results 

 

 Total Energy Consumption (MJ) Total Difference Consumption (MJ)  Saving percentage  

Non Insulation 45,154 0 0% 

Normal Insulation                        31,218 13,936 31% 

GA Insulation 22,511 22,643 50% 

 

 

 
Figure (24) The effect of insulation on energy consumption 



 

6. Conclusions 

By doing this project we could show that GA method not only improve the insulation quality, but also it can 

help building managers and architects to design and construct new generation of green houses. GA could 

increase R-Value and it could improve the insulation quality in humid condition as well. This paper 

introduced the new approach to make multilayer insulation for external walls and the validity of using this 

method tested by a case study. All process in that project followed an academic trend and all stages 

completed by error analysis and calibration. The first aim of this research was the development of Genetic 

Algorithm method in construction industry and the results can be clearly shown that using this method in 

future can be useful for saving energy and it can help governments to reduce gas emission.  
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